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ABSTRACT

Criteria for the photochemical conversion of solar energy are
reviewed in terms of utilization of photoactive organic materials. Endoergic
valence isomerizations which may be driven by visible light are proposed
for study. These isomerizations store electronic excitation energy as
chemical potential energy. Products of the proposed photoreactions are
kinetically stable for energy storage over controllable periods. Stored
energy is retrieved by thermal or catalytic recycling to the original
photoactive substance. Such organic materials are potentially useful as
additives to working fluids of conventional solar-thermal conversion units.
Photon energy storage is illustrated in several examples which utilize
300 - 500 nm radiation for isomerizations with storage capacities of about
100 cal/g. New data including quantum efficiencies, storage capacities,
and conditions for recycling are presented for a series of linked anthra-
cenes. A photocalorimeter capable of direct measurement of storage
enthalpies is described. The economic and physical requirements of a
photochemical storage material are outlined, and several systems for the

conversion of solar energy on an appropriate scale are suggested.




INTRODUCTION

Several excellent reviews3 have outlined advantages and criteria for
successful photochemica: conversion of solar energy. Chief among the bene-
fits in storage of light energy as chemical potential energy in relatively
stable molecules, ions, etc., is the potential solution in certain contexts
to the vexing problem of solar power intermittency. Photoformation of a
chemical 'fuel' could provide 2 source of energy during periods of low or
negligible solar intensity. Although organic dye - metal redox systems
which produce photogalvanic effects are well known,4 systems which are
strictly organic chemical in nature have not been thoroughly considered
in terms of photochemical sturage solar energy. We wish to outline
strategies for selection of organic materials for potential use in solar-thermal
energy conversion units and to describe several systems which store modest
amounts of solar energy and whiﬁp illustrate the principles.

A practical photochemical energy conversion system is described in Table I
in terms of criteria3’5 for efficient use of a closed cycle of reactants and
observationgiappropriate for use of organic materials and products. The simplest
plan requires a reaction, A —> B, which can be driven in one direction photo-
chemically and thermally in the reverse. The amount of energy given off in the
reaction B —> A represents the energy stored in the photochemical step. This
"in situ" energy conversion requires no separation of materials A and B (e.g.,
the separation of a gas as by-product from the mixture as in thermal storage
cycles7)nor the introduction of a new chemical (other than perhaps a catalyst,

vide infra) in order to complete the cycle.
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Table I. Requirements for the Organic Photochemical Conversion of Solar Energy
IMPERATIVE OBSERVATION
A v, g

B —— A + heat

Reactant A must absorb or be
sensitized to ultraviolet and
visible light.

Photoproduct B must not competi-
tively absorb (or quench sensi-
tizer).

The quantum yield for reaction
A > B must be near unity.

Reaction A -~ B must have a large
positive ground state enthalpy.

Photoproduct B must be (kineti-
cally) stable.

A chemical control external to
the cycle A < B may be used to
initiate B - A.

Reactant A (B) must be inexpen-
sive.

Materials must not be dangerous
or difficult to handle.

Monophotonic photochemistry at > 700 nm
is quite unlikely; useful range = 300 -
700 nm (40 - 90 kcal/Einstein), ~50% of
total solar energy.

Reaction A + B should be photochromic
(decrease in the degree or continuity
of unsaturation in A).

Intramolecular reactions should be favored
over intermolecular ones; luminescence
should not be competitive.

Selected valence photoisomerizations with
AH = 10 - 30 kcal/mol are known; reactions
should be selected in which small rings
are generated and/or aromaticity disrupted.

Orbital topology restrictions for selected
isomerizations inhibit B + A; reversions
at 50 - 100° will be useful.

Metal or acid catalysts may be suitable.

Availability on an industrial scale even-
tually required. Cost should be < $1.00/1b
(vide infra).

Chemicals which are toxic or which require
unusual atmospheres or pressures should
be avoided.




The most promising candidates for interconversions of the type

AZB are isomerizations of organic molecules, many of which may be cleanly
driven photochemically and/or thermally. A blend of factors enables
organic materials to store electronic excitation energy efficiently and
permanently. Properly selected organic isomerization systems have signi-
ficant storage enthalpies because large destabilizing bond angle strain

8 9

energies” may be gained or stabilizing resonance energies” may be lost

during photoisomerization. In addition, orbital topology or symmetry

constlr‘aints]0

enable energy rich photoproducts to withstand a substantial
thermodynamic driving force for back reaction by erecting kinetic barriers
to reversion. Ideally these barriers can be circumvented when desirable
through catalysis. Although no organic photochemical (latent heat) storage
system which makes efficient use of solar energy is yet known, a number of
prototypes have been examined, and some feasibility for the cyclic scheme
is suggested.

Classes of energy storing photoreactions are shown below. They
include the cycloaddition of aromatic and ethylenic pi components Ql +'g)
the "electrocyclic" or ring-chain isomerization of a butadiene moiety gg-*f).
and the "sigmatropic" contraction of a cyclic compound gg-:g). Storage
enthalpies (-AH, back reaction) for these photoisomerizations of 20, 10

9 of bond and resonance

and 20 kcal/mol may be estimated by consideration
energies and ring strain. Examples of all three reaction classes are known]]
and in most cases energy-rich photoproducts are kinetically stable at

ambient temperatures.
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PHOTOCHEMICAL STORAGE PROTOTYPES

The only photochemical system which has been thoroughly studied in terms
of storage of solar energy ostensibly as latent heat (with which organic systems
might be compared) is the equilibrium, NOC1 <— NO + 1/2 Clz. The data, which

12 indicate a reasonable storage capa-

have been reviewed by Marcus and Wohlers
bility. Nitrosyl chloride is highly colored, photochemically active over much
of the visible range with good solution quantum yield (¢ = 0.7 - 1.1) for de-
composition and a photoreaction enthalpy of 4.9 kcal/mol. Along with the
relatively low enthalpy however, the back reaction is problematic since the
colorless nitric oxide and (molecular) chlorine products revert rapidly at
room temperature and must be separated during photolysis in order to achieve

a practical photostationary state.

13

Splitter and Calvin were the first to suggest ~ that electronic excitation

energy could be stored as chemical potential energy through the photochemical
formation of small strained rings. Their example involved the photochemical
ring closure of N-alkyl-X-arylnitrones (7 »~ 8) which is thermally reversible.

" and is suitably photochromic

14,15

The photochemical step is generally observed

(nitrone absorption in the 300 - 500 nm range). The quantum efficiency

15

for ring closure is respectable (¢ = 0.2 - 0.5), ~ and the thermal back reac-

tion of the oxaziridine photoproducts (e.g., Q) occurs at useful temperatures

16 The amount of energy stored is unknown, but reflected in

in some cases.
the enthalpy for ring closure will be a large strain energy, quite generally

assumed for small rings to be about 25 kcal/mo].8
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The report of Cristol and SneH]7 concerning the isomerization 2 :2-lg
(R = C02H) is an early example of photon energy storage which may be reversed
under catalysis conditions. The parent norbornadiene, 9 (R = H), has received ]
considerable attention following the pioneering quantitative study of Hammond
and coworker*s.]8 High quantum efficiencies for direct photoisomerization of
norbornadiene dem‘vatives19 (¢ ~ 0.5) and for isomerization using a variety gi

of photosensitizers (¢ = 0.1 - 1.0)20

have been reported. The energy rich ]
isomer, quadricyclene (lQa R = H) is thermallyv stable to 150°,21 but can be reverted .j

using a variety of metal catalysts over a range of temperatures.22 The heat

liberated in the back reaction of 10 is impressive (R =H, AH = -26.2 kcal/mol, 285

23

cal/g, 25°). Recent important advances for the norbornadiene system include

the use of polymer supported sensitizers for driving the photoisomerization in

24

the 300 - 400 nm range with quantum yields of 0.5 and the development of in-

organic complexing agents (e.g., Cu(I)) for the enhancement of spectral sensi-
tivity.25 !
A measure of energy storage capacity and efficiency for these energy stor-

ing photoreactions is the calculated "Q value" as suggested by Ca]vert.3b

qQ = 100EAH )
A

where Q represents a percent efficiency, AH is the standard enthalpy increase
for the overall chemical reaction (A - B) (Calvert uses latent free energy3b),

¢ is the quantum efficiency for formation of product B, and E is photon energy
(kcal/Einstein) for an appropriate wavelength of absorbed radiation. The latter
is often associated with an absorption maximum or band edge or with a lamp
emission wavelength, although the relevant quantity in terms of solar energy

use is an integration of solar photon energy and distribution. Data for a

number of endoergic photoreactions are collected in Table II, including energy
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storage parameters for the isomerization of ll studied by Sasse ~ and the iso-

merizations of l327 and l§,28 which have been evaluated by Jones and coworkers. ,

VALENCE PHOTOISOMERIZATION OF LINKED ANTHRACENES

The photodimerization of anthracene (ll > l@, R = H) is the organic system
first cited as an example of the conversion of light energy.into chemical poten- i
tial energy.30 Anthracene and its derivatives, which absorb strongly around ;
400 nm, are photobleached in sunlight. Photodimers of varied structure3] are
produced in high chemical yield and absorb light only below 300 nm. The quantum r
efficiency for photodimerization is concentration dependent, approaching 0.3 at

32

high anthracene concentrations. Photodimers revert thermally to monomer anthra-

cenes ejther in the solid state or in solution with rates which depend on the

substitution pattern at bridge positions.3]a The conditions and heats for back

reactions for several examples are shown in Table III.

The intramolecular photoaddition of anthracene groups has been reported.31a’33

We have studied a number of these isomerizations (lg - gg and %l > gg), encouraged
that advantages were to be gained over the intermolecular examp]és. (1) Quantum ef-
ficiencies for isomerization of 1inked anthracenes should be independent of concentra-
tion. (2) Improved 1ight absorption might result from interchromophore interaction

in special cases. (3) Higher storage enthalpies might be found where

internal photoaddition requires formation of a strained three or four-membered

ring as the result of anthracene 1inkage.

Isomerizations ]9 + 20 are quantitative on irradiation at 366 nm in dilute
benzene solution. Quantum yields for linked anthracene photoisomerization (¢,
forward) and fluorescence (a process which competes for depletion of excited
states) are shown in Table IV. Interestingly, photoisomers 20 and 22 revert

photochemically (quantum efficiencies, ¢back' Table IV) as well as thermally,

but irradiation at short wavelengths is required for photochemical back reaction
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since the cage photoisomers absorb only below 300 nm. Quantum efficiencies for
forward and reverse photoisomerization and linked anthracene fluorescence sum

to unity (within experimental error). This behavior is consistent with a mechan-
ism, which we have proposed e]sewhere,34 involving an intermediate which is common
to photoisomerization in both directions and whose partitioning controls the ef-
ficiencies of forward and back reaction.

Linked anthracenes ]9 do not show unusual absorption due to chromophore
interaction (principal Aoss 390 nm). However, the doubly bridged paracyclophane
derivative 21 is orange in color and absorbs significantly past 500 nm.37 This
interesting compound is rapidly bleached in sunlight and photoisomerization can
be readily carried out using 458 nm radiation from an argon-ion laser.

Data are included in Table III for the thermal back reaction of photoisomers
QQ and gg. Recycling of the energy rich isomers is clean and virtually quanti-
tative in solvents such as o-dichlorobenzene. Sequential photochemical and thermal
reactions have been carried out on a small scale using artificial 1ight sources
or sunlight for the irradiation step. Without resorting to special methods of
purification of materials, as many as ten photo-thermal cycles may be completed,

although UV spectral monitoring of regenerated linked anthracene absorbance shows

some material degradation.

PHOTOCALORIMETRY
Differential scanning calorimetry (DSC) has been used to measure the heat
of thermal back reaction for selected isomers gQ and gg (see Table IV for calcu-

lated Q values). For reversion in the solid state, values obtained (Table III)

appear unpredictably low, in view of the reported enthalpy for reversion of
dianthracene (lg * W, R=» H) and anticipating additional release of ring strain
in 20 and 22 (vide supra). The insolubility of linked anthracenes precludes DSC

experiments in solution.
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An apparatus has been constructed (Scheme 1) which allows direct measure-

ment of stored photon energy in a solution experiment. The calorimeter is similar !

to one previously described,38 but modified for the introduction of light from
a monochromatic source. Heat effects (measured with thermistor probes and cali- |
brated against electrical resistance heating) for irradiation of a solution

sample capable of undergoing photochemical reaction (e.g., 13 = gQ) are compared %
with those for irradiation of an unreactive sample converts photon energy into |
heat (normally benzophenone in benzene, excitation at 366 nm). Precautions are
taken to insure that light incident on the samples is completely absorbed. Photo- L
calorimetrically determined values for the enthalpy of reaction 20 -+ 19 (X = CH2,
Y = H) are consistently upwards of 25 kcal/mol, consonant with the expectation
that data for reversion in the solid state reflect values which are biased due

to differential heats of subh‘mation:”a for the valence isomers. Unfortunately,
data collected so far show considerable scatter (+ 25%) and a reliable determina-
tion of the heats of reaction in.solution for the 1inked anthracene systems awaits

improvement in calorimeter sensitivity (presently, 0.01 cal/min). H

Procedures for the measurement of photochemical or photophysical heat effects g

have been known for some time. Early values for the quantum yield of photosyn- {
thesis in algae were obtained by photoca1or1‘metry.39 A novel method for the |
determination of fluorescence quantum yields employing heat effects has been
reported by Seybold.40 In a somwhat different application, enthalpies for re-
action of unstable photochemical products have been measured by differential
thermal ana1ysis.41 The development of the photocalorimetry technique for the
ready determination of latent heat storage capacities of photoproducts is surely

warranted.

PROSPECTUS

The economic and engineering requirements for a hypothetical photochemical

solar-thermal transducer have been examined, 2+42 Advantages noted include lower
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collector size and cost, lower collector temperature (reduced heat loss and in-
sulation requirements), smaller storage area, and improved adverse weather per-
formance (cloudy day effectiveness, storage at ambient temperature).

Most notable about selected organic valence isomerizations are their rela-
tively large storage enthalpies, their unidirectional photochemistry at long
wavelengths (desirable photochromism due to the destruction of pi systems), and
the kinetic stability of energy-rich photoproducts. Additionally, some isomeri-
zations (e.g., 9 ~ ]Q and }3 ~ ]14) may be reversed using homogeneous or hetero-
geneous catalysts, offering opportunities for chemical engineering of a cyclic
system capable of delivering heat at different temperatures. A simple plan,

6,24 for a photochemical solar-thermal energy con-

following earlier suggestions,
version unit is shown in Scheme II. The design incorporates polymer supported24
photosensitizer and reversion catalyst materials for heterogeneous activation
of a working fluid. The system could in principle store sensible as well as
latent heat.42

Characteristics of energy storing organic photoreactions are well illustrated
in the examples cited above. None of the systems, however, approach fulfillment
of criteria for the efficient storage and conversion of solar energy. All of
the photoreactions studied so far are principally deficient in utilizing the
solar insolation spectrum. Also, extensive recycle capability has not been demon-
strated, although organic isomerizations are known43 which impressively survive
repeated reaction on a small scale in solution.

Comparison of the energy storage capacities of several relevant materials
is shown in Table V. The energy density of hot water or rocks is not high,
but the costs of these sensible heat storage materials is low, relative to col-
lector and other costs for a conventional solar-thermal system, and cycles of

heating and cooling may be repeated indefinitely. The economics for latent

heat storage materials will be determined not only by raw material costs but

T —
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Table V. Energy Storage Capacities of Materials {

MATERIAL KCAL/MOL CAL/G BTU/LB

SENSIBLE HEAT STORAGE i
WATER (AT = 50°C) 0.9 50 91 }
ROCK, METAL (AT = 50°C) 10 18

LATENT HEAT STORAGE

CGHIZOG CARBOHYDRATE (COMBUSTION) 673 3,740 6,800 }*
€10 HYDROCARBON (COMBUSTION) 1,500 11,000 20,000
GLAUBER'S SALT (1 CYCLE) 11 60 108
(100 CYCLES) 6,000 10,800
ORGANIC VALENCE ISOMER (1 CYCLE) 20 133 240
(MW 150) (100 CYCLES) 13,300 24,000

also by the number of energy storage cycles that may be achieved. The model
here is a phase change material such as sodium sulfate decahydrate (Glauber's
salt), one of a number of inorganic chemicals whose energy-storing fusion proper-
ties are currently under examination by solar engineers.44 These materials have
relatively high energy density, are inexpensive (~ $0.10/1b), and have other
properties suitable for use in forced air heating systems. On the other hand,
heats of fusion for the salts diminish on repeated cycling due to incongruent
melting, and the deliver of heat is at a fixed and generally low temperature
(30 - 40°).%42

The unit of merit for the storage of solar energy as sensible or latent

6 5 44b

heat is 10" Btu (2.5 x 10° kcal). This figure approximates the energy of

atmospherically filtered solar radiation incident daily on a conventional
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(rooftop) flat-plate collector (~ 100 m2) in North American 1at1‘tudes.45 One :i
million Btu also corresponds roughly to the daily heating load in winter for £

46 The amount of a chemical

an average dwelling in a moderately cold climate.
required for the storage of 106 Btu as latent heat is 4200 1b (2000 kg or about
500 gal of a neat liquid), assuming a capacity of 20 kcal (80 Btu)/mol and
3 mol/1b. This simple calculation readily shows that material requirements for E”
practical chemical storage of solar energy are quite large.

An organic valence isomerization system (with storage enthalpy = 20 kcal/mol)
is competitive with other storage materials on energy density grounds alone. In- _ !i
cluded in Table V for comparison are storage capacities of photosynthetic fuels
(a carbohydrate and a hydrocarbon of molecular weight comparable to the proposed
valence isomer system) which have sizeable latent heats of combustion. The added
perspective is that many cycles of photo-thermal conversion of an organic isomeri-

zation system are required to produce the energy equivalent to that generated by ]

simply burning the same material.

The cost restrictions for a latent heat storage chemical are also severe.
Economic studies suggest a "cost allowance" for storage raw material of $2,000/

6 ., 44b 6

10~ Btu. This figure is amortized over three years, or about 300 (10~ Btu)

heating cycles. An organic material (~ 5000 1b) costing $0.10 - 0.40/1b would
meet this requirement. For comparison, salt hydrates which have been surveyed44b
have storage costs of $100 - 770 and storage weights of 8,800 - 13,300 1b for
repeated delivery of 106 Btu.

The analysis of the organic isomerization does not include, of course, the
cost of other materials (photosensitizers, catalysts) which may be necessary for
a photochemical-thermal system. A reasonable plan (Scheme II) would require
these additives in a volume which is lower and for a lifetime which is perhaps

longer than the storage chemical itself. Nonetheless, costs of the activating

agents will be non-trivial, although presently difficult to project.
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The number of large-scale industrial chemicals available at an appropriate
cost and scale, which have some potential for photochemical energy storage, is
quite small. Norbornadiene (9, R = H), although not presently manufactured,
warrants further attention due to its ready availability from cyclopentadiene
and acetylene. Dicyclopentadiene, which is known to undergo photosensitized
valence isomerization (gg - gg),57 is available on a large scale (@ $0.12/1b)
from the cracking of gas oil and naphtha. Its use would not detract from a di-
minishing supply of key petrochemical intermediates since it is expected to be
in oversupply in coming years.48 Another interesting candidate is 1,5-cyclooca-
diene (25) which is prepared industrially by dimerization of butadiene. Metal
complexing agents (Cu) have been shown to improve the spectral sensitivity of
g and to promote isomerization to valence isomer gg.49 Cyclooctadiene could
assume importance as a storage material for long range use due to the practical-
ityso of the sequence, ethanol - butadiene » cyclooctadiene which is not petro-
leum based. Studies of the senSitized photoisomerization of these commercially

important hydrocarbon dienes are currently underway in our laboratories.
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